Support vector machines for separation of mixed plant-pathogen EST collections based on codon usage.
نویسندگان
چکیده
MOTIVATION Discovery of host and pathogen genes expressed at the plant-pathogen interface often requires the construction of mixed libraries that contain sequences from both genomes. Sequence identification requires high-throughput and reliable classification of genome origin. When using single-pass cDNA sequences difficulties arise from the short sequence length, the lack of sufficient taxonomically relevant sequence data in public databases and ambiguous sequence homology between plant and pathogen genes. RESULTS A novel method is described, which is independent of the availability of homologous genes and relies on subtle differences in codon usage between plant and fungal genes. We used support vector machines (SVMs) to identify the probable origin of sequences. SVMs were compared to several other machine learning techniques and to a probabilistic algorithm (PF-IND) for expressed sequence tag (EST) classification also based on codon bias differences. Our software (Eclat) has achieved a classification accuracy of 93.1% on a test set of 3217 EST sequences from Hordeum vulgare and Blumeria graminis, which is a significant improvement compared to PF-IND (prediction accuracy of 81.2% on the same test set). EST sequences with at least 50 nt of coding sequence can be classified using Eclat with high confidence. Eclat allows training of classifiers for any host-pathogen combination for which there are sufficient classified training sequences. AVAILABILITY Eclat is freely available on the Internet (http://mips.gsf.de/proj/est) or on request as a standalone version. CONTACT [email protected].
منابع مشابه
Genome analysis Support vector machines for separation of mixed plant–pathogen EST collections based on codon usage
Motivation: Discovery of host and pathogen genes expressed at the plant–pathogen interface often requires the construction of mixed libraries that contain sequences from both genomes. Sequence identification requires high-throughput and reliable classification of genome origin. When using single-pass cDNA sequences difficulties arise from the short sequence length, the lack of sufficient taxono...
متن کاملSeparating Well Log Data to Train Support Vector Machines for Lithology Prediction in a Heterogeneous Carbonate Reservoir
The prediction of lithology is necessary in all areas of petroleum engineering. This means that to design a project in any branch of petroleum engineering, the lithology must be well known. Support vector machines (SVM’s) use an analytical approach to classification based on statistical learning theory, the principles of structural risk minimization, and empirical risk minimization. In this res...
متن کاملIdentification and Adaptive Position and Speed Control of Permanent Magnet DC Motor with Dead Zone Characteristics Based on Support Vector Machines
In this paper a new type of neural networks known as Least Squares Support Vector Machines which gained a huge fame during the recent years for identification of nonlinear systems has been used to identify DC motor with nonlinear dead zone characteristics. The identified system after linearization in each time span, in an online manner provide the model data for Model Predictive Controller of p...
متن کاملMining Biological Repetitive Sequences Using Support Vector Machines and Fuzzy SVM
Structural repetitive subsequences are most important portion of biological sequences, which play crucial roles on corresponding sequence’s fold and functionality. Biggest class of the repetitive subsequences is “Transposable Elements” which has its own sub-classes upon contexts’ structures. Many researches have been performed to criticality determine the structure and function of repetitiv...
متن کاملکاربرد الگوریتمهای دادهکاوی در تفکیک منابع رسوبی حوزۀ آبخیز نوده گناباد
Introduction: Reduction of sediment supply requires the implementation of soil conservation and sediment control programs in the form of watershed management plans. Sediment control programs require identifying the relative importance of sediment sources, their quantitative ascription and identification of critical areas within the watersheds. The sediment source ascription is involves two...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 21 8 شماره
صفحات -
تاریخ انتشار 2005